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Pretransitional optical activity of short-pitched chiral nematic liquid crystals
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We have developed, using the de Gennes theory of short-range orientational order in the isotropic phase, a
closed-form expression for the temperature dependence of the pretransitional optical activity of chiral nemat-
ics. Detailed calculations are included and the results are expressed in a form that can be easily tested
experimentally. The theoretical predictions are supported by experimental data.
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INTRODUCTION Fluctuations of both the planar spiral and the conical spi-
ral modes contribute directly t@s with the conical spiral
The macroscopic order parameter associated with phastominating and without coupling between these modes as
transitions of chiral nematics is normally taken to be thepreviously suggestefl?]. However, contributions from the
anisotropic part of the dielectric tensQx,;(r). This tensor m=*2 modes may become comparable to those ofnthe
being traceless and symmetric can be represented in terms ef+ 1 modes at temperatures closeTig also, contributions
five independent structural modé$—3]; all of which can  from the m==+2 modes are expected to increase with in-
fluctuate about their equilibrium value at a finite temperaturecreasing chirality. This contribution t¢ due to them= +2
These modes labeled=*2, =1, and 0 represent the planar modes was estimated to be approximately 10% within the
spiral, conical spiral, and nonchiral modes, respectiveltemperature interval — T,=0.2 K in the highly chiral nem-
[4,5]. The Landau-de Gennes free energy for each of thesatic 4-cyano-42-methy) butylphenyl (CB 15 [18]. The
modes vanishes at some temperatlife. All the Ty, are  mode-coupling hypothesis has been erroneously invoked in a
lower than the transition temperatufg,, andT; <T3 . number of casef5,12,14—17 in order to explain trends in
Highly chiral nematics are intriguing because they formoptical activity data.
the blue phase and show complex pretransitional behavior Demikov and Dolgano\18] claimed that contributions
[6,7]. If the isotropic-blue phase transition is approached byfrom them= =+ 2 modes should vary ad ¢ T*,) "1 while
cooling, thermodynamic fluctuations of the isotropic phasethose of them=*1 modes should vary asT¢ T 1)‘0'5.
become more correlated and this results in a sharp increagllings [4] has confirmed that the fit using an exponent of
of many propertiese.qg., intensity of light scattered and the —1.5 for them= =2 modes is significantly better than the fit
electric- or magnetic-induced birefringencénother prop-  obtained if an exponent of0.5 is used. Evidence for con-
erty, which behaves similarly, is the pretransitional opticaltriputions from them=+2 modes has been reported in a
activity. Although this effect was not anticipat¢dl], it has  number of casegl4-17,19.
proven to be a sensitive probe into the nature of such fluc- Wyse, Ennis, and CollingE20] measured both the tem-
tuations. perature and wavelength dependence/aeind expressed the
The first experimental evidence for this enhanced opticafesults as a function of even powers &fq,). The function
activity () was presented by Cheng and Mey8t. They  contained the same expondnt0.5) for the temperature de-
calculated and verified thel(- T*) %> temperature depen- pendence of the second- and fourth-order coefficients. How-
dence of(y). Dolganov, Krylova, and Filey10], using the  ever, more recent theoretical work by Dmitrienkmartially
same frameworKLandau—de Gennes theory of short-rangeincluded in Ref[18]) predicts that then=+1 modes con-
orientational order of the isotropic phasas Cheng and tribute in the second-order term of the wavelength expan-
Meyer, confirmed this divergent behavior in a mixture of sion, but both them=+1 and m=*+2 modes contribute
N-(p-methoxybenzylidenep’-butylanine (MBBA) and 5%  directly in the fourth-order term. The exponents for the

cholesteryl capriate. Bensimon, Domany, and Shtrikfddh  second- and fourth-order terms ar®.5 and—1.5, respec-
extended the theory to include the blue phase. In these earligively.

versions of the theory9-11], only the contributions from

the m=*=1 modes were considered. THEORY
Filev [12], in his theoretical approach, proposed a mode- o
coupling hypothesis whereby tima=+2 modes could be- For a cholesteric liquid crystal, the Landau—de Gennes

come activated, but unfortunately, did not provide all thefree energy to second order can be writterj 265-23

detalls of the calculations. He predicted that closel foin 1

h|gh!y chiral systems, the op_tlcal activity would reach a F2:F0+§f dr[aQiﬁ+b(ayQaﬁ)2+CaaQa7aﬁQB7
maximum and then decreagsince them=*+1 and m=

+2 modes make opposite contributions to the optical activ- —2de,5,Qus7,Qps], (1)
ity). This pretransitional maximum was first detected by

Demikov and Dolganoy13] in the isotropic phase of cho- whereQ,; is the dielectric tensor representing the local or-
lesteryl nonanoate. der,e,g, is the Levi-Civita tensora=a,(T—T*), the coef-
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ficientsb, ¢, andd are temperature independent dridis the (IQ o) =moly(d). (12)
second-order phase-transition temperature of the racemic
mixture. If the order parameter is expressed in terms of th&he solution to this equation can be expressed in terms of a

five structural modes Ed1) reduces to local orthornormal triplet of vectors oriented alo§gd*(g),
9%(q), 9%(8)=4.
1 35 The spherical unit vectors
Fo,=Fo+ 5% d3g{ a—mdq
I(Q=1@)=(9"+i9%)/v2,
c

+| b+ 6(4—"12) q2]|0m(Q)|2- 2 9 (@)=1*(§)=(91—i92)/V2,

Here, m labels the modeg is the wave vector of light, and 9%(8)=9%a)=4, (13
a™(q) is the amphtude of the mode. There is a specific value
For perturbations about the phase transition, correlatloﬂ— hus,

functions
U'a,e(Q) 73+ "3/5‘ |01|B_ aB(q)

Qw
-

(Qup(NQuAF)) = EG R L
O-aﬁ(q):ﬁ(ﬂaﬁﬁ—’_ﬁaﬂﬁ):ﬁ(laqﬁ+|ﬁqa):0-aﬁ(q)*u

are obtained by inverting the functional matrix of the qua-

dratic form ofF,. In the momentum representation, agB(Q):ﬁgf}O: \/g(qa%—%%g) (14)
Qup(F)=V" 1’22 Q€ (4)  The eigenvalues,(q) are determined by substituting the

expressiongl14) into Eq. (11) to give

andF, can be written as 72(q)=a+be?=2dq,

1 +
=5 2 tU(@) 53Qup(D)Qys(— ), (5) 7 Y(q)=a+(b+c)g’=2dq,
q
where (q)=a+(b+3c)g (15)
t2(q) = (a+bg?) 87+ cq,q”—2dqJ(q) (6) I'I'he correlation functioris(gq) can now be calculated as fol-

OWS:

and Since the partition functio is given by

JN(G)=ie,,,8,; q=|d|. (7 7= e (Fal(keT) (16)
More symmetrically,t76g can be replaced by d
75 b4 v 89 Y Y _ then,
4TYo=t 5,3 10, +1t, °s +tﬁ5 3(taﬁ+tlga)5
Y 1
3P St §(110,07°), ® z=3 e p[— PRORRC L ENETIE
oM q,m

whereTZﬁ(ﬁ) is a Hermitian operator acting on the symmet- (17)

ric traceless tensorQ,s. The inversion problem thus re- q
an

duces to the solution of

TEH@GL(D =123, © 3 A N @ (~8)
’ (Qup(@)Qyo( ~ D)=, -52 kT~ 5"

. . S m T (Q)

where the unit matrix| 73, has the form (18)
5_ 5

'cyrﬁ_ %(5315/# 5a5%)_ %5aﬁ5y5- (10) The correlation function is finally written as
The correlation functiois is now constructed from polariza- o (@)™ (— @)
tion tensorsgy (), which diagonalize: sz(q):ks-rz ap qm( 7‘; d . (19

a T q
T2 @ () =7"(@) ols( ). (1

The rotation of the plane of polarization can be described
The labelsm may be chosen to measure the polarizationby the antisymmetric part of the dielectric tenser,s,
along the momentum directioip=g/|q|, such that which has the form
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(20) i

Ae |¢e -
¢ 280 adv™viB

aﬁy v

wherek is the wave vectork= \zw/c, andy is the optical

activity. In the pretransitional isotropic region, the structural f dgdxde k?8g,—(Gg+Kg)(G,+K,)
activity ¢ can be obtained after the convolution of Eg0) (2m)° K’[g°+2kgx—i 7]
with eaﬁvlzy: me2

><2 Qul oT5(@) aTs(—8) — ols* (@) oT5* (— )]

Aeg8up K, =i We, 5 K, @5k, =21F.  (21)

aBy
Thus, 29
R Expanding the integral we arrive gt= 1+ ,, where
_ —iAsa'geaﬁka
p=—> - (22)  KBkeT f f Q.x(1+x?)kgPdq dx .
Verm T gy 2mAq’+2kgx—in)’ T
Now, (30)
Agp=r— f—dq D, (G+k and
80"3_47780 (2m)° pAATK) ) .
K2k T (1+x“+9g5)g°dq dx
Y& G (—G _OBJJ Qe K
X[Gaﬁ(q) Ga,B( Q)], (23) i2 480 o (2’7T)2[q2+ 2qu_| 7]] ’ 77_>01
where (31)
. a4 where_x=cos€. _ _
D, ()= T—ln( 34y "2 7), 7—0 (24) Using the calculus of residues, we get for théntegral,
- T 95 Q2
and|k|=Kkg. Il_BlDl Qs+ 2kx Qo+ 2kx]’ (32
So, where
d,:_ﬁe ‘ fd_qD @+ Go=(~ By +iD /2, Gs=(B,+iD1)/2,
28 adv™y (277.)3 By
_ [an _R2 _
and
Using the symmetry properties Gyﬁ(q) the summation
reduces to . - q% B 9
27 B,D,|\gst+2kx q,+2kx
Glo(d)—Go(— d)=kBT< mE wp(@os(—8)—c. C) 3 3
N @ @ (34)
(26) g3+ 2kx Qp+2kx
where where
_ 2mbayq L@ A,=alb, B,=2q,, D,=4A,—B2. (35)
{a+[b+&(4—m?)]g??~(mbayq)?
Performing the integration oves, we get
Consequently, then=0 mode makes no contribution to the .
optical activity. Taking into account expressions such as ~ kokgT [f1(a;)—fy(—a7)] 36
) In-1= e lanbroy 0 9
aﬁvkvlalz _Ik(q)1 (28)
and
which arises in the calculations, we can perform the summa-
tion over all indices. Next, take the coordinate axis g0 B kngT [fo(ay) —fa(—a%)] 3
that thez axis is along the vectdr, 6 is the polar angle, and Ym==2= de 8mb ' @7

¢ the azimuthal angle. The calculation thus proceeds as fol-
lows: where

031702-3



CARLOS HUNTE AND UPINDRANATH SINGH

1
fi(a))=—3%a2+aj+a’(1+ad)n 1+a—1 ,
4 1.2 3 2 2 1
fo(ay)=—3a,+3a5—astas(l+ajy)ln 1+a—2 ,
(38
and
Oyt _Qoéaoti ~Oob
al_ 2k§1 ’ a2_ 2k§2 ’ Q1_2b+c- (39)

Sinceké; ,<1 and|a; jJ>1, the In function is expanded in
powers of, 14, ,, and ¢ calculated to the lowest powers in

k§1o:
B ke TK3do&1b 2+ 8K5E: N
V1" 3omeobrci2?|3 T 51 e T
(40)
kBTk€q0§2 32((2)55
Pm=z02=— 9meh 7ot (4D
TEQ 15(1+0pé5)
Realizing that¢; can be written as
_2 . ! 42
fl_Dl - aélz(b+C/2)7l/2(T_TI)1/2, ( )
where
b%q3
* _T*
=T (ot o)’ “3

then the optical activity due to the= =1 modes is given by

__keTbkao [ c]™¥F 1
f(di71)
(TTe%) “
where
f 4 45
(9 70) 5 bbb+ c/2)2(1+ 2ED) “9
and
n=T-T,. (46)

Similarly, the contribution of then= =2 modes is given by

kBTkSqO f(Qo,72)

m=2™ " Toregb (T-T%,)%2" “0
where
k5
f(do,72) = (ao/D)A1+ 28 | (48)
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FIG. 1. Theoretical fit(solid line) to the optical activity of the
isotropic phase of CE6. The circles represent the experimental data.
The wavelength of light used is 633 nm.

and
2
b
Ti2=T*iqL, (49)
=)
with
T=T— T; 2 (50

Hence, if plane-polarized light travels through an opti-
cally active medium it emerges with its plane of polarization
rotated through some angle

I=Pot Ym=s1T Pm=+2.

o, the molecular optical activity that is independent of ori-
entational order, is given by

(51)

16N Bt
0= NZe (52)
whereg is the optical rotatory parametéd,the number den-
sity, A\ the wavelength of light, and the velocity of light.

In addition, the optical activity due to the= +2 mode is
opposite in sense to that due to time= =1 mode. Thus, for
highly chiral systems, the optical activity should reach a
maximum just before the transition to the ordered phase. Eq.
(51) may be expressed as follows:

B C
(T_T‘ir)05+ (T_TI)15+ (T_T3)15+ lﬁo
(53

p(T)=

RESULTS AND DISCUSSION

We tested the validity of the theory by fitting pretransi-
tional optical activity data of CE6. We used a rotating ana-
lyzer technique(described elsewhergl9]) to measure the
optical activity. The pretransitional optical activity and the fit
to Eq.(53) is shown in Fig. 1. The optical activity reaches a
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maximum just abovd; and then decreases.
The data when fitted to Eq53) yield the following pa-
rameters:

A=4.7+0.3°C%® cm 1) B=26.3+3.9°C'® cm™?})
Yo=—1.3+0.2degree cm?)
C=-19.3t3.9°C*® cm™?)

T5=44.43-0.4°C) T} =44.31+=1.0(°C)

PHYSICAL REVIEW E 64 031702

CONCLUSION

We have developed a closed form expression for the tem-
perature dependence of the pretransitional optical activity of
chiral nematics. The planar spiral and the conical spiral make
direct but opposite contributions to the optical activity. Ex-
perimental data are quite consistent with theoretical predic-
tions.

This paper includes the derivation for the= =1 fourth-
order contribution to the optical activity. As far as we are
aware, details of this calculation have not yet been published.
Also, our calculations contain much more details than those

The least squares fit is quite good except in the immediatef Ref. [18]. Hunte, Singh, and Gibbigl9] have measured
vicinity of the pretransitional maximum where there is a 5%the pretransitional optical of CB15 and successfully fitted the
difference between theoretical and experimental predictiongiata using the three exponents predicted by Dmitrienko and
Since the magnitudes & andC are similar but of opposite our calculations.

sign, contributions from the second and third terms of Eq.

(53) essentially cancel each other at temperatures much ACKNOWLEDGMENT

higher than the isotropic-BPIIl transition temperature. How-

ever, owing to the large number of fitting parameters in- We wish to acknowledge that we were aided by notes
volved, the error estimates of some of the parameters can lmitlining these theoretical calculations written by V. Dmit-

quite high.

rienko in 1991.
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